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Combinatorial Optimization

» Combinatorial optimization is hard Certification of an optimal TSP tour through

» Incredibly successful heuristics (for approximation) 85.900 cities
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APPROXIMATION HARDNESS
» MAX-CUT is APX-hard

» Unless P = NP, there exists no poly-time algorithm that computes a solution with more than

16
N = —N_, cuts for any MAX-CUT instance [Hastad]
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FORMULA COLORING INTEGER LINEAR PROGRAM (ILP

» Generalization of graph coloring
» (G F AN =23) = (=)

min C - X

xeZ"
subject to linear constraints

» NP-complete
e Mt » Even hard to approximate! [Kearns]
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A Provable Approximation Advantage

"A fault tolerant quantum computer can approximate certain combinatorial optimization
problems super-polynomially more efficiently than a classical computer.” [Pirnay]
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Computational Problems and Models

Deterministic Finite Automaton (DFA)

RSA
Public key

N

clph3r = m® mod n
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Private Key
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POLYNOMIAL REDUCTION

Class of log-depth Computational Problems A

poly-size Boolean circuits

f computing LSB(m)

Instances

Private key must be hard coded!

Solutions
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A bit of learning theory

CONCEPT CLASS CONSISTENCY PROBLEM
Domain X Set of representations C C on ( C H)

Example: The set of all images Example: The set of all Boolean circuits
o Instance: A set of labeled examples
C
§={(x,cx)|x € X}

C t : S c . . . .
Depicts  tre Solution: Minimal-size i € H which is consistent

(A Comenn with S !
y g define: opty,,(S) = | h]

compression
.\ "approximation gap"| Parameter

1 2@ T=7 n=1000, £ = 0.01
For a sample set S of size | S| = 0| — + —] 1 | — =1
c ¢ 107? { —— a=3
any h € H consistent with § which also satisfies | 2| < optey,($)* | S & @ 107
1039 -
achieves error(h) := P [h(x) # c¢(x)] < € with high probability. Lot /

Wherea > 1and0 < f < 1 [Blumer] 0.0 02 04 06 038
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A Provable Approximation Advantage

STRATEGY With sample size
| S| = poly(n,(—:_l) anyh e H
» Classical hardness of inverting RSA that is consistent with S, s.t.

» Hardness of approximation for | 7| < optey,(S)” \S\ﬁ
Con(C-RSA, H) yia Occam's razor | |achieves error < ¢.

» Approximation preserving

reduction t ) » Learning C-RSA by H can be
Con(DFA-RSA, DFA) and then seen as an approximation

ROA [Kearns] task: Approximate opt,,,(S)

£ approximation
£ preserving
¥ reduction

> approximation-preserving » Approximately learning a
reduction to ILP-RSA [Pirnay] C-RSA circuit enables one to .
. min C- X
break RSA ! [Alexi] 7"
o subject to
» Efficient quantum algorithm for > || = #(partitions) constraints

approximating ILP-RSA [Pirnay] » S — FC-graph
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A Provable Approximation Advantage

Hardness to invert
RSA

Figure 5 in [Pirnay]

Hardness to PAC-
learn C-RSA by BC

Hardness to
approximate

OptCon(S) by d
consistent h € H

Hardness of
Con(C-RSA, H)

Hardness of
Con(BF-RSA, H)

Hardness of
Con(LSTM-RSA, H)

Hardness of
Con(DFA-RSA, H)
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Hardness of
Con(DFA-RSA, DFA)
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Hardness of
FC-RSA
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Hardness of
ILP-RSA

Combinatorial optimization tasks

Approximation tasks
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ILP-RSA

By our construction, we get the integer linear programming problem ILP g Indicator variable

_ (color i is being used)

1<i<M , (2, € P))
subject to the following constraints,
forall u,z € {1,..., M}, (wu,i=1)(:>(2:i),
M
forallu € {1,..., M}, only one color per variable: Z Tu,i = 1,
i=1
forall u,z € {1,..., M}, count colors: z,,; < w;,
for all ) clauses (2, # 2z»)and allz € {1,..., M}, Toi+ Ty <1,
for all R clauses ((z, # 2v) V (2, = z1)) withj € {1, ..., R}, (a; =1) <= (2 = 21),
(bj =1) <= (2u # 2v),
sj = (a; V bj),
sj 2 1,

and wi, Xv,i,aj,bj,8; € {O, 1} and 1 < 2y, 2y, 2k, 21 < M.

indicator variable (22)

(23)
(24)

(25)
(26)
(27)
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Classical Hardness of Approximation

Theorem V.12 (Classical hardness of approximation for integer linear programming). Assuming the hardness of inverting the RSA function,
tee ests alc_robzlzstz poly nozal_ time al ‘orlth that on input an instance 1LP g of ILP- RSA finds an assignment of the

Z w;i < optiLp (ILP)*|ILP £ |5 (46)

foranya > 1and 0 < 8 < 1/4.



An Efficient Quantum Algorithm

Algorithm 1: Approximate the solution of Con(C-RSA,BC)

Move along the chain of reductions...

for all ILP py and for some oo > 1.



Conclusion

» Constructive quantum ILP instances
advantage for approximate
optimization

Quantumly efficient
to approximate
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Classically hard
to solve exactly

» Opens up new problems to
study with actual quantum
optimization algorithms
(QAOA)

Classically hard

: Quantumly efficient
to approximate

to solve exactly

» Alternative proofs via the PCP /
theorem possible [Szegedy]

» Opens up the path towards B
more practical advantage- =0 N_ @~ /NG
bearing instances

RSA-3SAT-ILP
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