# Quantum Advantages for Approximate Combinatorial Optimization

Niklas Pirnay, Vincent Ulitzsch, <u>Frederik Wilde</u>, Jens Eisert, Jean-Pierre Seifert 2023-12-01

<u>arXiv:2212.08678</u>

frederikwil.de/hqcc2023







Berlin

### **Combinatorial** Optimization

- Combinatorial optimization is hard
- Incredibly successful heuristics (for approximation)
- Can quantum computers help?

#### **APPROXIMATION HARDNESS**

- MAX-CUT is APX-hard
- $N = \frac{16}{17} N_{\text{opt}} \text{ cuts for any MAX-CUT instance [<u>Håstad</u>]}$

#### **FORMULA COLORING**



**Chris Martin** wikimedia CC BY-SA

- Generalization of graph coloring
- $(z_1 \neq z_2) \land ((z_1 = z_3) \rightarrow (z_2 = z_4))$
- NP-complete
- Even hard to approximate! [Kearns]



**Operations Research Letters** Volume 37, Issue 1, January 2009, Pages 11-15



### Certification of an optimal TSP tour through 85,900 cities

David L. Applegate <sup>a</sup> ⊠, Robert E. Bixby <sup>b</sup> ⊠, Vašek Chvátal <sup>c</sup> ⊠, William Cook <sup>d</sup> ∠ ⊠, <u>Daniel G. Espinoza</u><sup>e</sup> ⊠, <u>Marcos Goycoolea</u><sup>f</sup> ⊠, <u>Keld Helsgaun</u><sup>g</sup> ⊠

### Unless P = NP, there exists no poly-time algorithm that computes a solution with more than



## **A Provable Approximation Advantage**

"A fault tolerant quantum computer can approximate certain combinatorial optimization problems super-polynomially more efficiently than a classical computer." [Pirnay]





### **Computational Problems and Models**



#### **Deterministic Finite Automaton (DFA)**



#### **POLYNOMIAL REDUCTION**





### A bit of learning theory

#### **CONCEPT CLASS**



#### **OCCAM'S RAZOR**

For a sample set *S* of size  $|S| = \tilde{\mathcal{O}} \left[ \frac{1}{\epsilon} + \left[ \frac{n^{\alpha}}{\epsilon} \right]^{\frac{1}{1-\beta}} \right]$ 

any  $h \in H$  consistent with S which also satisfies  $|h| \leq \operatorname{opt}_{\operatorname{Con}}(S)^{\alpha} |S|^{\beta}$ achieves  $\operatorname{error}(h) := \mathbb{P}_{x}[h(x) \neq c(x)] \leq \epsilon$  with high probability. Where  $\alpha \geq 1$  and  $0 \leq \beta < 1$ 

#### **CONSISTENCY PROBLEM**

Con(C, H)  
Instance: A set of labeled examples  

$$S = \{(x, c(x)) | x \in X\}$$
  
Solution: Minimal-size  $h \in H$  which is consistent  
with S  
define:  $opt_{Con}(S) := |h|$ 



## **A Provable Approximation Advantage**

#### **STRATEGY**

- Classical hardness of inverting RSA
- Hardness of approximation for Con(C-RSA, H) yia Occam's razor
- Approximation preserving reduction to Con(DFA-RSA, DFA) and then FC-RSA [Kearns]
- approximation-preserving reduction to ILP-RSA [<u>Pirnay</u>]
- Efficient quantum algorithm for approximating ILP-RSA [Pirnay]

- - Learning C-RSA by H can be seen as an *approximation task*: Approximate  $opt_{Con}(S)$
  - Approximately learning a C-RSA circuit enables one to break RSA ! [Alexi]

With sample size  $|S| = \operatorname{poly}(n, e^{-1})$  any  $h \in H$ that is consistent with S, s.t.  $|h| \le \operatorname{opt}_{\operatorname{Con}}(S)^{\alpha} |S|^{\beta}$ achieves error  $\leq \epsilon$ .

- $|h| \mapsto #(partitions)$
- $S \mapsto FC$ -graph



approximation preserving reduction

min  $\mathbf{c} \cdot \mathbf{x}$  $x \in \mathbb{Z}^n$ subject to

constraints

## A Provable Approximation Advantage



### ILP-RSA

By our construction, we get the *integer linear programming* problem  $ILP_F$ 

subject to the following constraints,

for all  $u, i \in \{1, ..., M\}$ ,

for all  $u \in \{1, ..., M\}$ ,

for all  $u, i \in \{1, ..., M\}$ , for all Q clauses  $(z_u \neq z_v)$  and all  $i \in \{1, \ldots, M\}$ , for all R clauses  $((z_u \neq z_v) \lor (z_k = z_l))$  with  $j \in \{1, \ldots, R\}$ ,

and  $w_i, x_{u,i}, a_j, b_j, s_j \in \{0, 1\}$  and  $1 \le \hat{z}_u, \hat{z}_v, \hat{z}_k, \hat{z}_l \le M$ .





### **Classical Hardness of Approximation**

**Theorem V.12** (Classical hardness of approximation for integer linear programming). Assuming the hardness of inverting the RSA function, there exists no classical probabilistic polynomial-time algorithm that on input an instance ILP<sub>F</sub> of ILP-RSA finds an assignment of the variables in  $ILP_F$  which satisfies all constraints and approximates the size  $opt_{ILP}(ILP_F)$  of the optimal solution by

 $1 \leq i \leq M$ 

for any  $\alpha \geq 1$  and  $0 \leq \beta < 1/4$ .

 $\sum w_i \leq opt_{\mathrm{ILP}} (\mathrm{ILP}_F)^{\alpha} |\mathrm{ILP}_F|^{\beta}$ 



## An Efficient Quantum Algorithm

### Algorithm 1: Approximate the solution of Con(C-RSA, BC)

**Input** : A labeled sample S of C-RSA

**Output :** The description of a Boolean circuit consistent with S

Pick any example  $s \in S$  and read e, N from it; Run Shor's algorithm [1] to factor N and retrieve p and q; Run the extended Euclidean algorithm to compute d, such that  $d \times e = 1 \mod (p-1)(q-1)$ ; // Note that at this point, d is the secret RSA exponent. Output the description of a Boolean circuit that, on input binary (powers<sub>N</sub>(RSA(x, N, e)), N, e), multiplies the 2<sup>*i*</sup> th powers LSB of the result.

Move along the chain of reductions...

**Theorem V.16** (Quantum efficiency for ILP-RSA). There exists a polynomial-time quantum algorithm that, on input an instance ILP  $_{F_S}$  of ILP-RSA, finds a variable assignment A that satisfies all constraints and for which the objective function is bounded as

 $1 \leq i \leq M$ 

for all ILP<sub>*F*<sub>S</sub></sub> and for some  $\alpha \geq 1$ .

- together for which the bit  $d_i = 1$  (thereby hard-wiring d into the circuit), using the iterated products technique [33] and outputs the

 $\sum w_i \leq opt_{\mathrm{ILP}} (\mathrm{ILP}_{F_S})^{\alpha}$ 



### Conclusion

- Constructive quantum advantage for approximate optimization
- Opens up new problems to study with actual quantum optimization algorithms (QAOA)
- Alternative proofs via the PCP theorem possible [<u>Szegedy</u>]
- Opens up the path towards more practical *advantagebearing* instances



Slides at: <a href="mailto:frederikwil.de/hqcc2023">frederikwil.de/hqcc2023</a>

